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Concurrent engineering (CE) has demonstrated for over twenty years that it can produce high level mission designs in a short period of time,

from months to only a few days. Unfortunately, sometimes these designs – while technically sound – are not feasible due to mass or cost

constraints. A major new capability is needed by CE teams that will enable mission designers to re-focus a study, and avoid spending a great

deal of time and effort with 15 engineers designing a non-feasible mission. The Jet Propulsion Laboratory’s Team X is addressing this

problem by developing mass and cost models that produce estimates for the probability of breaching a mass or cost threshold within the first

hours of a study. These models are built on statistical relationships based on mass and cost allocations per mission component by mission

type, derived from over twenty years of Team X studies and NASA missions. By linking these relationships, insights about total mass or cost

can be made early in a study, based on preliminary requirements or the first completed spacecraft subsystem designs; estimates incorporate

updated spacecraft subsystem designs as they are completed throughout the study. A methodology, generalized model, verification and

example implementation for a cost limit breach are presented.



Fully understanding the system, structure of

information, and processes flow in a concurrent

design session is important for planning how

models will ingest information, and determining

which modeling methodologies are most

appropriate [8].

Figure 1: There are higher variance levels on the 

component estimates that are based on typical 

resource allocation percentages than engineering 

designs

Figure 2: When the telecom system is complete, known 

power needs inform the Power designer; power can’t 

close before Telecom, and structures can’t close before 

either; even though the power system has a closed 

design, it has a wider variance than the telecom system



The methodology presented in this

paper is primarily based on typical

resource allocations per mission and

spacecraft component per mission

type. This enables us to get rough, first

order total mission and spacecraft

costs and masses very quickly by

taking a known mass or cost,

combining that information with the

typical allocation for that part of the

spacecraft, and working backwards to

get an implied total mass or cost of the

spacecraft.

Figure 3: Determining Percent Allocation per component of 

total mission mass or cost is a very simple calculation, with 

major applications – especially when leveraging the 

differences in expected resource allocation per mission 

type; analysis shows distinct differences between mission 

types (2 of multiple shown)



In order to help design teams optimally use their time

during concurrent engineering sessions by enabling

them to refocus an non-feasible mission when working

in a resource constrained environment, the key

capabilities and outputs of the tools discussed in this

paper are [5]

• Estimate resource allocations prior to the 

concurrent design session –

• Show expected allocation of resources

• Sum total current estimated mass or cost

• Calculate probability that the estimated resource 

stays beneath a given resource constraint

• Show whether the current design of the concurrent 

design session appears to be ‘in-family’ with typical 

missions of that type

• Test – “Are you leaving something on the table?” 

Examine if typical mission of your mission type and 

approximate total mass or cost used more mass or 

cost somewhere – that you’re leaving on the table



Using the data and statistical principles to accomplish 

the desired outputs within the constraints of the system



As described above, we would like to create a tool that has the ability

to estimate the resources required for each component of a mission,

estimate the resources of the total mission, estimate the probability

that the total mission resources will break through a resource cap, and

function with a varying number of available inputs [8].

We have at our disposal data from previously flown missions, as well

as from a number of completed mission studies. Separate analysis

was performed outside of this paper that indicates that the data from

the mission studies is highly similar to the data from the actual

missions. In the analysis presented, data from actual missions and

highly detailed mission studies was merged together in order to meet

data needs for the analysis.

The components that we’d like to have estimates for include: total

mission, flight system, each flight element within the flight system,

payload, each Work Breakdown Structure (WBS) line item for the

mission, and each Subsystem of the flight system; when a flight

system includes multiple flight elements, we’d like to have a resource

breakdown for each subsystem of each flight element [10].

As discussed above, we will avoid using parametric models, and will

focus on a version of analogy based estimation – defining our

analogous missions, or ‘groups of similar missions’ or ‘mission types’

by looking for similar resource allocations or similar trends in resource

allocation per group, and different resource allocations among

different groups. This is accomplished using a mixture of subject

matter expertise and quantitative methods. The typical resource

allocations give us key relationships between the components of a

mission [14].

An embodiment of the methodology presented to determine the

probability of a resource breaking through a resource cap as

updated inputs are used is shown, followed by examples of using

the expected percent allocations of cost applied within additional key

tools.



Figure 5: Fast cost breakouts allow mission designers to 

investigate payload capacities for different architectures

Figure 6: Applying percent allocations shows how much we 

may expect to spend on the probe – can we build the probe 

for that cost figure? We can test for feasibility here; specific 

numbers have been edited



The backbone of the methodology presented is typical resource allocation profile per component of a

mission – which provides us with the key relationships per mission component. We need these typical

allocations or trends in allocations to be consistent within each ‘type’ of mission, and we would expect

them to be different across different types of missions. For example – we would expect a $500M Earth

Orbiter to spend a higher percent of its total budget on the instrument suite (payload) than the percent

of total budget we would expect a Mars Lander mission to spend on its instrument suite.

In order to understand all of the pieces of analysis necessary for the methodology presented, we will

discuss them individually:

• Estimate expected resource allocations

• Estimate total needed resources from subcomponent inputs

• Discussion of variance

• Sample the total cost estimates

• Weight and combine the total cost estimates

• Find the probability of breaking a resource cap

• Identify different ‘types’ of missions - examine different mission types to look for differences in 

key relationships within mission cost and mass (allocations)

• Key focus of separating missions by type - the major defining factors that were used in 

determining the different ‘mission type’ groups for this analysis were

• Resulting mission types with distinct key allocations



Key Focus of Separating Missions by Type

Looking for separation of ‘types’ of mission by focusing on

consistent resource allocations or trends in resource allocation is

the optimal method for the methodology presented, as this

method optimally minimizes the difference in allocation of

resources per mission component within each distinct mission

type grouping. By minimizing the variation in per mission

component allocation, we get a more accurate and precise

estimate of the resources required for each component of the

mission, and a more accurate and precise estimate for the total

resources needed for a mission. This methodology doesn’t force

differences in resource allocation per mission component across

different groups, but it does optimally separate out mission types

with different per component allocations from each other.

It is important to examine trends in resource allocation per

mission type as well – as some resource allocations will vary

depending on the total size or cost of a mission, within a given

type of mission. Different types of missions will have resource

allocation percentages that change in different ways, so it is

important to include the change in resource allocation per mission

component, when determining the different type of missions.

For example – the percent allocation of total cost that the Payload

gets for Earth Orbiters increases as the total cost of the mission

cost increases – because generally, it only takes a certain amount

of money to get your mission into Earth’s orbit, and then the rest

of your money can go towards a more expensive instrument. If

you have $250M, you may need to spend $150M to get to Earth’s

orbit and stay there, whereas if you have $500M, you may need

to spend $150M to get to Earths orbit, but now you have $350M

out of $500M instead of $50M out of $200M for your instrument

suite (note: if your instrument suite increases in cost or mass,

there are typically increases in your flight system, but for the

purposes of this example, Earth Orbiter Payload is shown to not

be a constant percent of total mission cost). However, consider a

Mars Lander – if your payload increased by even $10M, you know

that you’ll have more mass to land on Mars, so you know that as

your Payload costs increase, you can expect your flight system

costs to increase as well – so perhaps the percent of total mission

cost that goes to payload does not increase as your total mission

cost increases (or more specifically, it does not increase as much

as it does for other mission types).



Figure 7: If Flight System funding is high relative to the 

Payload, there is a lower Flight System cost growth risk

Figure 8: If Flight System funding is low relative to the 

Payload, there is a higher Flight System cost growth risk

We are interested in the typical resource allocations for all components of a mission, but there are some components that give

us the most important information, and drive the mass and cost of the total mission. Payload to flight systems relationships, and

Payload + Flight System to total mission relationships – per mission type – are the most important relationships in our system.

Spacecraft Cost-Growth Risk

The area where mission mass or cost growth risk usually materializes is in the spacecraft. Whether it’s due to changing payload

requirements, or an ambitiously designed and costed spacecraft – this is where mass and cost growth happens. By having a

good understanding of typically required spacecraft resources needed for a given payload, mission designers can understand

their mass and cost growth risk profile [12].



Figure 9: There are solid relationships between total 

mission A-D development cost and Payload + Flight System 

cost; a mission that is being designed is can be examined 

to test if it appears to be ‘in-family’



Figure 10: The methodology presented penalizes missions 

for having very unusual cost allocations, this helps the 

design team be aware of risks that are not evident when 

only looking at the sum of the components



Figure 11: Clear visual warnings about being ‘out-of-

family’ help designers stay aware of what’s happening 

during lively design sessions
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